publications
A list of my publications on machine learning and cyber security.
2024
- arXivOptimizing Interpretable Decision Tree Policies for Reinforcement LearningDaniël Vos, and Sicco VerwerarXiv preprint arXiv:2408.11632 2024
Reinforcement learning techniques leveraging deep learning have made tremendous progress in recent years. However, the complexity of neural networks prevents practitioners from understanding their behavior. Decision trees have gained increased attention in supervised learning for their inherent interpretability, enabling modelers to understand the exact prediction process after learning. This paper considers the problem of optimizing interpretable decision tree policies to replace neural networks in reinforcement learning settings. Previous works have relaxed the tree structure, restricted to optimizing only tree leaves, or applied imitation learning techniques to approximately copy the behavior of a neural network policy with a decision tree. We propose the Decision Tree Policy Optimization (DTPO) algorithm that directly optimizes the complete decision tree using policy gradients. Our technique uses established decision tree heuristics for regression to perform policy optimization. We empirically show that DTPO is a competitive algorithm compared to imitation learning algorithms for optimizing decision tree policies in reinforcement learning.
2023
- IJCAIOptimal Decision Tree Policies for Markov Decision ProcessesDaniël Vos, and Sicco VerwerInternational Joint Conference on Artificial Intelligence 2023
Interpretability of reinforcement learning policies is essential for many real-world tasks but learning such interpretable policies is a hard problem. Particularly, rule-based policies such as decision trees and rules lists are difficult to optimize due to their non-differentiability. While existing techniques can learn verifiable decision tree policies, there is no guarantee that the learners generate a policy that performs optimally. In this work, we study the optimization of size-limited decision trees for Markov Decision Processes (MPDs) and propose OMDTs: Optimal MDP Decision Trees. Given a user-defined size limit and MDP formulation, OMDT directly maximizes the expected discounted return for the decision tree using Mixed-Integer Linear Programming. By training optimal tree policies for different MDPs we empirically study the optimality gap for existing imitation learning techniques and find that they perform sub-optimally. We show that this is due to an inherent shortcoming of imitation learning, namely that complex policies cannot be represented using size-limited trees. In such cases, it is better to directly optimize the tree for expected return. While there is generally a trade-off between the performance and interpretability of machine learning models, we find that on small MDPs, depth 3 OMDTs often perform close to optimally.
- The First AI4TSP Competition: Learning to Solve Stochastic Routing ProblemsLaurens Bliek, Paulo Costa, Reza Refaei Afshar, and 8 more authorsArtificial Intelligence 2023
This paper reports on the first international competition on AI for the traveling salesman problem (TSP) at the International Joint Conference on Artificial Intelligence 2021 (IJCAI-21). The TSP is one of the classical combinatorial optimization problems, with many variants inspired by real-world applications. This first competition asked the participants to develop algorithms to solve an orienteering problem with stochastic weights and time windows (OPSWTW). It focused on two learning approaches: surrogate-based optimization and deep reinforcement learning. In this paper, we describe the problem, the competition setup, and the winning methods, and give an overview of the results. The winning methods described in this work have advanced the state-of-the-art in using AI for stochastic routing problems. Overall, by organizing this competition we have introduced routing problems as an interesting problem setting for AI researchers. The simulator of the problem has been made open-source and can be used by other researchers as a benchmark for new learning-based methods. The instances and code for the competition are available at https://github.com/paulorocosta/ai-for-tsp-competition.
2022
- Sok: Explainable machine learning for computer security applicationsAzqa Nadeem, Daniël Vos, Clinton Cao, and 4 more authorsEuropean Symposium on Security and Privacy 2022
Explainable Artificial Intelligence (XAI) aims to improve the transparency of machine learning (ML) pipelines. We systematize the increasingly growing (but fragmented) microcosm of studies that develop and utilize XAI methods for defensive and offensive cybersecurity tasks. We identify 3 cybersecurity stakeholders, i.e., model users, designers, and adversaries, who utilize XAI for 4 distinct objectives within an ML pipeline, namely 1) XAI-enabled user assistance, 2) XAI-enabled model verification, 3) explanation verification & robustness, and 4) offensive use of explanations. Our analysis of the literature indicates that many of the XAI applications are designed with little understanding of how they might be integrated into analyst workflows – user studies for explanation evaluation are conducted in only 14% of the cases. The security literature sometimes also fails to disentangle the role of the various stakeholders, e.g., by providing explanations to model users and designers while also exposing them to adversaries. Additionally, the role of model designers is particularly minimized in the security literature. To this end, we present an illustrative tutorial for model designers, demonstrating how XAI can help with model verification. We also discuss scenarios where interpretability by design may be a better alternative. The systematization and the tutorial enable us to challenge several assumptions, and present open problems that can help shape the future of XAI research within cybersecurity.
- Adversarially Robust Decision Tree RelabelingDaniël Vos, and Sicco VerwerEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2022
Decision trees are popular models for their interpretation properties and their success in ensemble models for structured data. How- ever, common decision tree learning algorithms produce models that suf- fer from adversarial examples. Recent work on robust decision tree learn- ing mitigates this issue by taking adversarial perturbations into account during training. While these methods generate robust shallow trees, their relative quality reduces when training deeper trees due the methods be- ing greedy. In this work we propose robust relabeling, a post-learning procedure that optimally changes the prediction labels of decision tree leaves to maximize adversarial robustness. We show this can be achieved in polynomial time in terms of the number of samples and leaves. Our results on 10 datasets show a significant improvement in adversarial accu- racy both for single decision trees and tree ensembles. Decision trees and random forests trained with a state-of-the-art robust learning algorithm also benefited from robust relabeling.
- Robust optimal classification trees against adversarial examplesDaniël Vos, and Sicco VerwerAAAI Conference on Artificial Intelligence 2022
Decision trees are a popular choice of explainable model, but just like neural networks, they suffer from adversarial examples. Existing algorithms for fitting decision trees robust against adversarial examples are greedy heuristics and lack approximation guarantees. In this paper we propose ROCT, a collection of methods to train decision trees that are optimally robust against user-specified attack models. We show that the min-max optimization problem that arises in adversarial learning can be solved using a single minimization formulation for decision trees with 0-1 loss. We propose such formulations in Mixed-Integer Linear Programming and Maximum Satisfiability, which widely available solvers can optimize. We also present a method that determines the upper bound on adversarial accuracy for any model using bipartite matching. Our experimental results demonstrate that the existing heuristics achieve close to optimal scores while ROCT achieves state-of-the-art scores.
- Efficient Circuits for Permuting and Mapping Packed Values Across Leveled Homomorphic CiphertextsJelle Vos, Daniël Vos, and Zekeriya ErkinEuropean Symposium on Research in Computer Security 2022
Cloud services are an essential part of our digital infrastructure as organizations outsource large amounts of data storage and computations. While organizations typically keep sensitive data in encrypted form at rest, they decrypt it when performing computations, leaving the cloud provider free to observe the data. Unfortunately, access to raw data creates privacy risks. To alleviate these risks, researchers have developed secure outsourced data processing techniques. Such techniques enable cloud services that keep sensitive data encrypted, even during computations. For this purpose, fully homomorphic encryption is particularly promising, but operations on ciphertexts are computationally demanding. Therefore, modern fully homomorphic cryptosystems use packing techniques to store and process multiple values within a single ciphertext. However, a problem arises when packed data in one ciphertext does not align with another. For this reason, we propose a method to construct circuits that perform arbitrary permutations and mappings of such packed values. Unlike existing work, our method supports moving values across multiple ciphertexts, considering that the values in real-world scenarios cannot all be packed within a single ciphertext. We compare our open-source implementation against the state-of-the-art method implemented in HElib, which we adjusted to work with multiple ciphertexts. When data is spread among five or more ciphertexts, our method outperforms the existing method by more than an order of magnitude. Even when we only consider a permutation within a single ciphertext, our method still outperforms the state-of-the-art works implemented by HElib for circuits of similar depth.
2021
- Efficient training of robust decision trees against adversarial examplesDaniël Vos, and Sicco VerwerInternational Conference on Machine Learning 2021
Current state-of-the-art algorithms for training robust decision trees have high runtime costs and require hours to run. We present GROOT, an efficient algorithm for training robust decision trees and random forests that runs in a matter of seconds to minutes. Where before the worst-case Gini impurity was computed iteratively, we find that we can solve this function analytically to improve time complexity from O(n) to O(1) in terms of n samples. Our results on both single trees and ensembles on 14 structured datasets as well as on MNIST and Fashion-MNIST demonstrate that GROOT runs several orders of magnitude faster than the state-of-the-art works and also shows better performance in terms of adversarial accuracy on structured data.